Pseudomonas stutzeri and related species undergo natural transformation.
نویسندگان
چکیده
Cells of Pseudomonas stutzeri are naturally transformed by homologous chromosomal DNA; they do not require chemical treatment to become competent. This capacity to undergo natural transformation was found to be shared by the closely related species P. mendocina, P. alcaligenes, and P. pseudoalcaligenes, but was not detectable in strains of P. aeruginosa, P. perfectomarinus, P. putida, P. fluorescens, or P. syringae. P. stutzeri could be transformed either on plates or in liquid medium. Only double-stranded chromosomal DNA was effective; single-stranded DNA and plasmid DNA were not. DNA fragments larger than 10 kilobase pairs were more effective than smaller fragments. The transformation frequency was proportional to DNA concentration from 1 ng/ml to 1 microgram/ml; higher concentrations were saturating. The maximum frequency, about 10(-4) transformants per recipient cell, was obtained with cells from a culture in the early stationary growth phase. A variety of chromosomal mutations have been transformed, including mutations to auxotrophy and to antibiotic resistance. Other systems for genetic exchange in P. stutzeri have not yet been found; transformation offers a means for the genetic analysis of this metabolically versatile organism.
منابع مشابه
Complete Genome Sequence of the Highly Transformable Pseudomonas stutzeri Strain 28a24
Here, we report the complete genome sequence for an isolate of Pseudomonas stutzeri that is highly competent for natural transformation. This sequence enables insights into the genetic basis of natural transformation rate variations and provides an additional data point for genomic comparisons across a ubiquitous and highly diverse bacterial species.
متن کاملType IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, wa...
متن کاملHigh Frequency of Natural Genetic Transformation of Pseudomonas stutzeri in Soil
Agar medium (SME) prepared from aqueous soil extract was used to examine genetic transformation of Pseudomonas stutzeri JM302 (his-i) by homologous his' DNA in a plate transformation assay. Growth studies indicated that SME was strongly limited in carbon and nitrogen sources. Transformation was observed on SME supplemented with pyruvate, phosphate, and ammonium. A 25-fold increase of the transf...
متن کاملBiology of Pseudomonas stutzeri.
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its part...
متن کاملRequirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI.
The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termed pilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 153 1 شماره
صفحات -
تاریخ انتشار 1983